1 Jordanian quantum spheres
نویسنده
چکیده
We introduce and investigate a one parameter family of quantum spaces invariant under the left (right) coactions of the group-like element T (j=1) h of the Jordanian function algebra Funh(SL(2)). These spaces may be regarded as Jordanian quantization of the two-dimensional spheres.
منابع مشابه
Hermitian metric on quantum spheres
The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.
متن کامل1 1 N ov 2 00 3 Noncommutative Geometry of Super - Jordanian OSp h ( 2 / 1 ) Covariant Quantum Space
Extending a recently proposed procedure of construction of various elements of differential geometry on noncommutative algebras, we obtain these structures on noncommu-tative superalgebras. As an example, a quantum superspace covariant under the action of super-Jordanian OSp h (2/1) is studied. It is shown that there exist a two-parameter family of torsionless connections, and the curvature com...
متن کاملIrreducible Decomposition for Tensor Product Representations of Jordanian Quantum Algebras
Tensor products of irreducible representations of the Jordanian quantum algebras Uh(sl(2)) and Uh(su(1, 1)) are considered. For both the highest weight finite dimensional representations of Uh(sl(2)) and lowest weight infinite dimensional ones of Uh(su(1, 1)) , it is shown that tensor product representations are reducible and that the decomposition rules to irreducible representations are exact...
متن کاملar X iv : q - a lg / 9 70 50 27 v 1 2 8 M ay 1 99 7 Jordanian U h , s gl ( 2 ) and its coloured realization
A two-parametric non-standard (Jordanian) deformation of the Lie algebra gl(2) is constructed, and then, exploited to obtain a new, triangular R-matrix solution of the coloured Yang-Baxter equation. The corresponding coloured quantum group is presented explicitly.
متن کاملCLASSIFICATION OF BICOVARIANT DIFFERENTIAL CALCULI ON THE JORDANIAN QUANTUM GROUPS GLh,g(2) AND SLh(2) AND QUANTUM LIE ALGEBRAS
We classify all 4-dimensional first order bicovariant calculi on the Jordanian quantum group GLh,g(2) and all 3-dimensional first order bicovariant calculi on the Jordanian quantum group SLh(2). In both cases we assume that the bicovariant bimodules are generated as left modules by the differentials of the quantum group generators. It is found that there are 3 1-parameter families of 4-dimensio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001